<u>GRAPHS AND GRAPHICAL</u> SOLUTION OF EQUATIONS

1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS:

A graph can be drawn to represent are equation connecting two variables. There are different types of equations which give different types and shapes of graphs .

Below is a summary of graphs in the form of $y = ax^n$, -1, 0, 1, 2 and 3.

Graphs of the form $y = ka^x$, where a > 0 and $a \neq 1$ and k is a constant are shown below.

A linear graphs is of the form y = mx + c, where m and c are constants.

All linear graphs are straight lines, e.g. y = x, 2x - 1, y = -3x + 2 and 2x + 3y = 8.

To draw a linear graph, you will need only three points.

EXAMPLE 1:

Draw the graphs of y = 2x - 1. From your graphs, find

- a) The value of y when x = 1.3.
- **b)** The value of x when y = -5.8,
- c) The value of k given that (k, 3.4) lies on the graphs of y = 2x 1

SOLUTION:

To draw the graphs of y = 2x - 1:

STEP \longrightarrow **1** : Locate **3** points.

$$y = 2x - 1$$

$$x -2 0 2$$

$$y -5 -1 3$$

STEP \longrightarrow 2 : Plot these points and draw a straight line joining them to obtain the graph of y = 2x - 1.

STEP \longrightarrow 3 : Label your graph with the equation of the line .

GRAPH DRAWING

From the graph.

a) When x = 1.3, y = 1.6

b) When y = 5.8, x = 2.4

c) When
$$y = 3.4$$
, $k = 2.2$

The corresponding value of x when y = 3.4 is the value of k.

TIP FOR STUDENTS:

Only 2 points are needed to draw a straight line graphs. The third point is to check that you have not made a mistake in the substitution .

EXAMPLE2:

- a) Draw the graphs of each of the following equation on the same axes .
 - i) x + 3 = 0
 - ii) $y = \frac{1}{2} x$
 - iii) 5y + 3x = 11
- **b)** Find the area of the triangle bounded by these three lines .

SOLUTION:

a) i)
$$x + 3 = 0$$

 $x = 3$
 $x = 3$
The graphs of $x = -3$ is a
vertical line parallel to the y
- axis and crosses the x- axis
at $x = -3$.

ii)
$$y = \frac{1}{2} x \leftarrow$$
 The graphs of $y = mx$ is a straight line passing through the origin.

x	-2	0	2
у	-1	0	1

iii)
$$5y + 3x = 11$$

$$5y = 3x + 11$$
$$y = -\frac{3}{5}x + 2\frac{1}{5}$$

x	-3	0	3
у	4	2.2	0.4

b) Area of triangle bounded by these three lines

1.3 SOLVING SIMULTANEOUS LINEAR EQUATIONS BY USING THE GRAPHICAL METHOD:

Given a pair of simultaneous linear equations, we can solve them algebraically as learned or we can also use the graphical method to solve them

EXAMPLE:

Solve the following simultaneous equations graphically.

x + 2y = 5y = x + 1SOLUTION :

We have learned to solve the pair of simultaneous equations either by using the substitution or the elimination method . Here, we will use a graphical method to solve them .

METHOD : Draw the two lines on the same axes . The solution to the simultaneous equations is the *x* – and *y* - coordinates of the point of intersection of both lines .

$$x + 2y = 5
 2y = -x + 5
 y = -\frac{1}{2}x + 2\frac{1}{2}
 x
 x -3 1 3$$

$$y = x + 1$$

x	-3	0	3
у	-2	1	4

GRAPH DRAWING

From the graphs, the coordinates of the point of intersection are (1, 2).

 \therefore The solution to the simultaneous equation is x = 1 and y = 2.

TIP FOR STUDENTS:

Choose a scale as large as possible to increase the accuracy of the solution.

1.4 GRAPHS AND GRAPHICAL SOLUTION OF QUADRATIC EQUATIONS:

- **1**. Quadratic graph are graphs are whose equations are of the form $y = ax^2 + bx$
 - + c, where a, b and c are constants and $a \neq 0$. e.g. $y = 2x^2$, $y = x^2 + x 5$ and
 - $y = -\frac{1}{2} x^2 + 8$.

TIPS FOR STUDENTS:

If a = 0, then equation becomes y = bx + c. This is a linear graph !

- 2. The graph of a quadratic equation is a smooth U-shaped curve called a parabola.
- 3. The curved of a quadratic graph is symmetrical about the line of symmetry.
- 4. The curved of a quadratic graph has either a maximum or minimum point . The line of symmetry passes through the maximum/minimum point of the parabola .

5. To sketch the graph of a quadratic equation . rewrite the equation in the form $y = \pm (x - p)^2 + q$ or y = (x - a) (x - b) where *a*, *b*, *p* and *q* are constants.

EXAMPLE 1:

Sketch the following graphs.

- a) $y = (x-3)^2 + 2$
- **b)** $y = -x^2 + 4x 3$

SOLUTION :

 $y = -(x-3)^2 + 2$ **a)** Minimum point = (3, 2)At the y – axis, x = 0, $y = (0-3)^2 + 2$ = 11 y 11 $y = -(x-3)^2 + 2$ **(3, 2)** 0 3 X **b)** $y = \frac{1}{x^2} + 4x - 3$ $= (x^2 - 4x + 3)$ = -(x-1)(x-3)

At the x - axis,
$$y = 0$$

- $(x - 1)(x - 3) = 0$
 $\therefore x - 1 = 0$ or $x - 3 = 0$
 $x = 1$ or $x = 3$

At the Minimum point

 $x = \frac{1+3}{2}$ = 2 When the x = 2, $y = -2^2 + 4(2) - 3$ = 1 \therefore Minimum point = (2, 1) At the y - axis, x = 0 $y = -0^2 + 4(0) - 3$ = -3 y (<mark>2</mark>, **1**) 1 0 2 3 1 $y = -x^2 + 4x - 3$ -3

EXAMPLE2:

- a) Sketch the graph of $y = 2x^2 + 3x 8$.
- **b**) Draw and label the line of symmetry .

SOLUTION

a)
$$y = 2x^2 + 3x - 8$$
.
 $= 2\left(x^2 + \frac{3}{2}x - 4\right)$
If the equation cannot be factorised,
rewrite it in the form $a = -(x - p)^2 + q$ by
completing the square .
 $= 2\left[x^2 + \frac{3}{2}x + \left(\frac{3}{4}\right)^2 - 4 - \left(\frac{3}{4}\right)^2\right]$
 $= 2\left[\left(x + \frac{3}{4}\right)^2 - 9\frac{1}{8}\right]$
Line of symmetry
Minimum point $= \left(-\frac{3}{2}, -9\frac{1}{8}\right)$
At the y - axis, $x = 0$
 $y = 2(0)^2 + 3(0) - 8$
 $= -8$
At the x - axis, $y = 0$
 $2\left(x + \frac{3}{4}\right)^2 - 9\frac{1}{8} = 0$
 $\left(-\frac{3}{4}, -9\frac{1}{8}\right)^{\frac{1}{2}} - 9\frac{1}{8}$
 $\left(-\frac{3}{4}, -9\frac{1}{8}\right)^{\frac{1}{2}} - 9\frac{1}{8}$

- 8

$$2\left(x + \frac{3}{4}\right)^{2} = 9\frac{1}{8}$$

$$2\left(x + \frac{3}{4}\right)^{2} = 4\frac{9}{16} \quad \text{Divide both sides by 2}$$

$$x + \frac{3}{4} = \pm \sqrt{4\frac{9}{16}}$$

$$\therefore x = \sqrt{4\frac{9}{16}} - \frac{3}{4} \quad \text{or} \quad x = -\sqrt{4\frac{9}{16}} - \frac{3}{4}$$

$$x \approx 1.39 \quad \text{or} \quad x \approx -2.89 \text{ (correct to 3 sig. fig.)}$$

b) Equation of line of symmetry :
$$x = -\frac{3}{4}$$

The line of symmetry passes through the minimum point of the curve .
EXAMPLE3:

- a) Draw the graph of $y = x^2 + x 2$ for $-4 \le x \le 3$.
- **b**) From your graph, find
 - i) The value of y when x = 1.5,
 - ii) The value of x when y = 5,
 - iii) The least value of *y*,
 - iv) The equation of the line of symmetry.

SOLUTION

a) Construct a table for the corresponding values of **x** and **y**.

x	- 4	- 3	- 2	- 1	0	1	2	3
у	10	4	0	- 2	- 2	0	4	10

Plot the points and join them to form a smooth curve.

GRAPH DRAWING

- **b**) From your graph.
 - i) When x = 1.5, y = 1.7.
 - ii) When y = 5, x = 3.2 or $x \approx 2.2$,
 - iii) The least value of *y* is 2.3,
 - iv) The equation of the line of symmetry x = -0.5.

TIPS FOR STUDENTS:

Do not draw a straight line between (-1, -2) and (0, -2). The curve dips to its lowest value half – way between the points. To find the minimum point, find y when x = -0.5.

$y = (-0.5)^2 + (-0.5) - 2 = -2.25$

 The line of symmetry is the vertical line that passes through the vertex (maximum or minimum point) of the parabola.

EXAMPLE4:

The variables x and y are connected by the equation $y = x^2 - x - 5$. Some corresponding values of x and y are given below.

x	- 4	- 3	- 2	- 1	0	1	2	3	4	5
у	15	7	а	- 3	- 5	b	- 3	11	7	15

- a) Calculate the values of *a* and *b*
- b) Taking 2 cm to represent 1 unit on the horizontal x axis and 1 cm to represent 1 unit on the vertical y – axis , draw the graph of $y = x^3 - 5$ for $-4 \le x \ge 5$.
- c) Use your graph to solve the equations .
 - i) $x^2 x 5 = 0$
 - ii) $x^2 x = 8$
 - iii) $x^2 x 5 = 2x + 1$

d) By drawing a tangent, find the gradient of the curve $y = x^2 - x - 5$ at the point (2,

- **-3**).
- e) Draw and label the line of symmetry of the graph.

SOLUTION:

- $y = x^{2} x 5$ a = (-2)² - (-2) - 5 = 1
- $b = (1)^2 (1) 5 = -5$

GRAPH DRAWING

c) i)
$$x^2 - x - 5 = 0$$

y = 0

From the graph,

When y = 0, $x \approx -1.8$ or $x \approx 2.8$.

• The solution are $x \approx -1.8$ or $x \approx 2.8$.

ii) $x^2 - x = 8$ Rearrange the equation so that the left - hand side is equal to $x^2 - x - 5$ $x^2 - x - 5 = 8 - 5$ Subtract 5 from both sides $x^2 - x - 5 = 3$ y = 3

Draw the line y = 3

From the graph,

When y = 3, $x \approx -2.4$ or $x \approx 3.4$.

 \therefore The solution are $x \approx -2.4$ or $x \approx 3.4$.

iii)
$$x^2 - x - 5 = 2x + 1$$

 $y = 2x + 1$

Draw the graph of the straight line y = 2x + 1

y = 2x + 1

x	-3	0	3
Y	-5	1	7

From the graph the solution are $x \approx -1.4$ or $x \approx 4.4$.

TIPS FOR STUDENTS:

The solution of the equation $x^2 - x - 5 = 2x + 1$ are the x – coordinates of the points

of intersection of the curve $y = x^2 - x - 5$ and the straight line y = 2x + 1.

d) (1,-6), (3,0)

Gradient of the curve at the point (2, -3)

$$= \frac{0 - (-6)}{3 - 1}$$

TIPS FOR STUDENTS: GRADIENT OF THE CURVE The gradient of the curve at *P* is the tangent to the curve at *P*. The tangent to the curve at *P* is the straight line (*AB*), that touches the curve at *P*. Gradient of the curve at $P = \frac{y_2 - y_1}{x_2 - x_1}$ $y = \frac{B(x_2, y_2)}{B(x_2, y_2)}$

П

► X

e) Equation of the line of symmetry is x = 0.5.

EXAMPLE 5:

The variables x and y are connected by the equation $y = \frac{1}{2} (8x - x^2)$. Some

corresponding valu	es of x and y a	re given below.
--------------------	-------------------------------	-----------------

x	0	1	2	3	4	5	6	7	8
у	0	3.5	6	7.5	а	7.5	6	3.5	0

- a) Calculate the values of *a*.
- b) Taking 2 cm to represent 1 unit on each axis, draw the graph of $y = \frac{1}{2} (8x x^2)$ for $0 \le x \ge 8$.
- c) By drawing a tangent, find the gradient of the curve at the point (6,6).
- d) On the same axes, draw the graph of the straight line $y = 8 \frac{2}{3}x$ and use your graphs to solve the equation $= \frac{1}{2}(8x x^2) = 8 \frac{2}{3}x$.
- e) From the graphs, find the range of values of x for which $\frac{1}{2}(8x x^2) \ge 8 \frac{2}{3}x$.

SOLUTION:

a) $y = \frac{1}{2}(8x - x^2)$ $a = \frac{1}{2}[8(4) - (4)^2] = 8$

```
b)
```

GRAPH DRAWING

c) (5, 2, 7, 6), (6.75, 4.5)

Gradient of the curve at the point (6,6)

$$= \frac{4.5 - 7.6}{6.7 5 - 5.2}$$
$$= \frac{-3.1}{1.55}$$
$$= -2$$

d)
$$y = 8 - \frac{2}{3}x$$

x 0 3 6
y 8 6 4

$$\frac{1}{2}(8x - x^2) = 8 - \frac{2}{3}x$$

From the graph the solution are $x \approx 2.25$ or $x \approx 7.1$.

TIPS FOR STUDENTS:

The solutions of the equation $\frac{1}{2}(8x - x^2) = 8 - \frac{2}{3}x$ are the *x* – coordinates of the points of intersection of the curve $y = \frac{1}{2}(8x - x^2)$ and the straight line $y = 8 - \frac{2}{3}x$.

e) From the graphs, the values of x for which $\frac{1}{2}(8x - x^2) \ge 8 - \frac{2}{3}x$ occurs where the curve is above the line.

The range of values of x is $2.25 \le x \le 7.1$.

1.5 GRAPHS AND GRAPHICAL SOLUTION OF OTHER EQUATIONS:

CUBIC GRAPHS

Cubic graphs can be written in the form $y = ax^2 + bx^2 + cx + d$, where a, b, c and d are constants and $a \neq 0$.

e.g. $y = x^3 + x^2 - x + 2$, $y = 2x^3 - 7$ and $y = -3x^3 + 2x - 1$.

EXAMPLE

- a) Draw the graph of $y = x^3 12x + 6$ for $-4 \le x \le 4$.
- **b**) From your graph, find
 - i) The value of y when x = 2.5,
 - ii) The values of x when y = 10.
- c) By drawing a tangent, find the gradient of the curve at the point there x = -1.
- **d**) On the same axes, draw the graph of the straight line $y = 1\frac{1}{2}x + 9$ and use

your graphs to solve the equation $x^3 - 12x + 6 = 1\frac{1}{2}x + 9$

SOLUTION:

a) Construct the table for the corresponding values of *x* and *y*.

 $y = x^3 - 12x + 6$

x	-4	-3.5	-3	-2	-1	0	1	2	3	3.5	4
у	-10	5.1	1.5	22	17	6	-5	-10	-3	6.9	22

\blacksquare TIPS FOR STUDENTS

Plot extra points at x = -3.5 and x = 3.5 to help you draw the curve because of the

large difference between the *y* values .

GRAPH WORKS

b) From the graphs,

- i) When x = 2.5, $y \approx -8.25$,
- ii) When y = 10, $x \approx -3.3$, $x \approx -0.35$ or $x \approx 3.6$.
- c) (-2, 26), (-0.5, 12.5)

Gradient of the curve at the point where x = -1

$$= \frac{12.5 - 26}{-0.5 - (-2)}$$
$$= \frac{-3.1}{1.55}$$
$$= -9$$
d) $y = 1\frac{1}{2}x + 9$

x	-4	0	4
у	3	9	15

$$x^3 - 12x + 6 = 1\frac{1}{2}x + 9$$

From the graphs, the solutions are $x \approx -3.55$, $x \approx -0.2$ or $x \approx 3.75$.

RECIPROCAL GRAPHS

A reciprocal graph is written in the form $y = \frac{a}{x+b}$. where *a* and *b* are constants and (x+b)

≠ 0.

e.g. $y = \frac{1}{x}$, $y = \frac{2}{x}$, $y = \frac{8}{x+1}$ and $y = \frac{5}{2x-3}$

EXAMPLE : 1

Draw the graph of $y = \frac{8}{x}$ for $-4 \le x \le 4$.

SOLUTION

a)
$$y = \frac{8}{x}$$

x	-4	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3	4
у	-2	-2.7	-4	-8	-16	-26.7	26.7	16	8	4	2.7	2

Add more points here to help you draw more accurately

GRAPH DRAWING

curve gets nearer and nearer to the straight line (usually an axis) but never quite touches the line .

The equation of the line of symmetry is y = x and y = -x.

EXAMPLE : 2

The variables *x* and *y* are connected by the equation $y = \frac{12}{x+1}$. Some corresponding values of *x* and *y* are given in the table below .

x	0	1	2	3	4	5	6	7
у	12	6	4	3	а	2	1.7	1.5

- **a**) Calculate the value of **a**.
- b) Using a scale of 2 cm to represent 1 unit on the horizontal *x* axis and 1 cm to represent 1 unit on the vertical *y* axis, draw the graph of $y = \frac{12}{x+1}$ for $0 \le x \le 7$.
- c) On the same axes, draw the graph of $y = \frac{3}{4}x + 8$.

From the graph, find

- i) The solution of the equation $\frac{12}{x+1} = \frac{3}{4}x + 8$.
- ii) The value of x for which the gradient of the curve is equal to $-\frac{3}{4}$.

SOLUTION:

a)
$$y = \frac{12}{x+1}$$

 $a = \frac{12}{x+1} = \frac{12}{45} = 2.4$

b)

GRAPH DRAWING

c)
$$y = \frac{3}{4}x + 8$$

x	0	4	6	
y	8	5	3.5	

i)
$$\frac{12}{x+1} = \frac{3}{4}x+8$$

From the graphs, the solution is $\textbf{x}\approx~\textbf{0.6}$.

ii)

TIPS FOR STUDENTS

To find the value of x for which the gradient of the curve is equal to $-\frac{3}{4}$,

draw a tangent to the curve which is parallel to the line $-\frac{3}{4}x + 8$.

From the graph, the gradient of the curve is equal to $-\frac{3}{4}$ at x = 3.

GRAPHS OF THE FORM $y = \frac{a}{x^2}$

The graph of $\frac{a}{x^2}$, where a is a constant and $x \neq 0$, lies above the x – axis.

EXAMPLE :

Draw the graph of $y = \frac{1}{x^2}$ for $-3 \le x \le -3$.

SOLUTION

$$y = \frac{1}{x^2}$$

x	-3	-2	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	2	3
у	0.11	0.25	1	4	6.25	11.11	11.11	6.25	4	1	0.25	0.11

GRAPH DRAWING

GRAPHS OF SUMS OF POWER FUNCTIONS:

Where we add two power functions together, we get a new function.

e.g. The sum of $y = 2x^2$ and $y = \frac{1}{x}$ gives $y = 2x^2 + \frac{1}{x}$.

EXAMPLE :

The variables x and y are connected by the equation $y = 2x + \frac{6}{x} - 5$. Some corresponding values of x and y are given in the table below.

x	1	1.5	2	2.5	3	3.5	4
у	3	а	2	2.4	3	3.7	b

- **a**) Calculate the value of **a** and **b**.
- b) Using a scale of 4 cm to represent 1 unit on each axis draw the graph of $y = 2x + \frac{6}{x} 5$ for $1 \le x \le 4$.
- c) On the same axes, draw the graph of $y = \frac{1}{4}x + 2$. Find the values of x in the interval $1 \le x \le 4$ for which
 - i) $2x + \frac{6}{x} 5 = \frac{1}{4}x + 2$.
 - ii) $2x + \frac{6}{x} 5 > \frac{1}{4}x + 2$.
- **d**) By drawing a tangent, find the gradient of the curve at the point where x = 2.

SOLUTION

a)
$$y = 2x + \frac{6}{x} - 5$$

 $a = 2(1.5) + \frac{6}{1.5} - 5 = 2$
 $b = 2(4) + \frac{6}{4} - 5 = 4.5$

b)

GRAPH DRAWING:

c) i)
$$y = \frac{1}{4}x + 2$$

x	1	2	4
у	2.25	2.5	3

$$2x + \frac{6}{x} - 5 = \frac{1}{4}x + 2.$$
The solutions are the *x* - coordinates of the points of intersection of the curve $y = 2x + \frac{6}{x} - 5$ and the straight line $y = \frac{1}{4}x + 2$.

From the graphs, the solution are $x \approx 1.25$ or $x \approx 2.75$.

ii) From the graph, the ranges of values for which $2x + \frac{6}{x} - 5 > \frac{1}{4}x + 2$ are 1 <

x < 1 or 2.75 < x < 4.

d) (1.6, 1.8), (3, 2.5)

Gradient of the curve at the point where x = 2

$$= \frac{2.5 - 21.8}{3 - 1.6}$$
$$= \frac{0.7}{1.4}$$
$$= 0.5$$

GRAPHS OF EXPONENTIAL FUNCTIONS :

The graphs of exponential functions are of the from $y = ka^x$, where a > 0 and $a \neq 1$ and k is a constant.

e.g. $y = 2^x$, $y = 8(3^x)$

EXAMPLE

a) Draw the graph of $y = 2^x$ for $-1 \le x \le 3$.

- **b)** From your graph, find
 - i) The value of y when x = 2.3
 - ii) The value of x when y = 6.7

c) Use your graph to solve the equations

- i) $2^x = 3$,
- ii) $2^x = 4 x$.

SOLUTION

a) $y = 2^x$

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3
у	0.5	0.71	1	1.41	2	2.83	4	5.66	8

GRAPH DRAWING

- **b**) From your graph
 - i) When x = 2.3, y = 4.9
 - ii) When y = 6.7, x = 2.75.

c) $2^x = 3$

Draw the line y = 3.

From the graphs, the solution is $\mathbf{x} \approx \mathbf{1.6}$.

The x – coordinate of the point of
intersection of the line $y = 3$ and the
curve gives the solution .

ii) $2^x = 4 - x$.

X	0	1	2
у	4	3	2

From the graphs, the solution is $x \approx 1.4$

◄

The x - coordinate of the point of intersection of the line y = 4 - x and the curve gives the solution.